GRAHAM PRIEST

ON A PARADOX OF HILBERT AND BERNAYS

ABSTRACT. The paper is a discussion of a result of Hilbert and Bernays in their Grund-
lagen der Mathematik. Their interpretation of the result is similar to the standard intepre-
tation of Tarski’s Theorem. This and other interpretations are discussed and shown to be
inadequate. Instead, it is argued, the result refutes certain versions of Meinongianism. In
addition, it poses new problems for classical logic that are solved by dialetheism.

1. INTRODUCTION

Hilbert and Bernays’ Grundlagen der Mathematik was published between
1934 and 1939. It contained a definitive account of the state of the art
of mathematical logic at the time. Much of what it contains has been
reproduced and modernised in later texts; some has simply passed into
the folklore of the subject;1 and some has been forgotten. This essay is
a discussion of a small but significant passage of this kind. I shall start
by giving a streamlined and slightly generalized version of a proof to
be found in Hilbert and Bernays. I will then discuss what to make of
it, including Hilbert and Bernays’ view of the matter.” Because of my
own views on the paradoxes of self-reference,? I shall be particularly
concermed with its significance for dialetheism.

For orientation, consider the Liar Paradox in the setting of formal
arithmetic. Given the self-referential abilities of arithmetic we can prove
a fixed point theorem for formulas to the effect that for any formula of
one free variable, ¢(z), there is a formula, 1, such that 1 < ©({¢))
is provable, where (1) is the numeral of the godel number of 1.4 Now
let T be a truth predicate, and let ®(7T'z) be any formula containing the
open sentence T'z. Then by the fixed point lemma, there is a formula,
1, such that ¢ <+ ®(T(1)). Given the substitutivity of equivalents and
an instance of the T-schema, T'()) <> 1, it follows that i <> ®(1)). In
particular, take ® simply to be negation, and we have the Liar Paradox.
Hilbert and Bernays’ argument proceeds in essentially the same way,
except that it uses a denotation function instead of a truth predicate, and
identity instead of equivalence.
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2. THE FIXED POINT THEOREM

I will give Hilbert and Bernays’ argument in the context of first order
arithmetic, as they do. We will assume that the language contains a
number of function symbols, including one for every primitive recursive
function.> We will also assume that the denotation function for the lan-
guage is represented by a function symbol; specifically, that there is a
function symbol, §, satisfying the condition that §(s) = s, for any closed
term, s. I will call this the denotation principle. As will be clear from the
proof, a much less demanding conxent is, in fact, required for the proof:
a language than can refer to its own terms, the denotation function, and
some form of self-reference will suffice.
We will first demonstrate the following lemma:

LEMMA. Let t(z) be any term with one free variable, x. Then there is
a closed term, s, such that:

s = t((s)).

Proof. Given any term, 7, let its diagonalisation be the term itself
with each free variable replaced by (r). Diagonalisation is a primitive
recursive function on codes. Let it be represented by the function symbol
g. Now, consider the term ¢(gz). Call this 7. Its diagonalisation is t(g(r)).
Call this s. Since the diagonalisation of r is s, g(r) = (s). Hence, by
substitutivity of identicals (si), t(g{r)) = t((s)). But the left hand side
is exactly s. Hence we have the result. O

We can now state and prove the main result:

THEOREM. Let t(z) be any term with one free variable, x. Then there
is a closed term, s, such that s = t(s).5 :

Proof. Consider the term ¢(dx). By the Lemma, there is a closed
term, s, such that s = ¢(6(s)). The result follows by the denotation
principle and si. Note, for future reference, that the fixed point, s, is the

diagonalisation of ¢(dgx). O

3. HILBERT AND BERNAYS’ CONCLUSION

So much for the result. What of its consequences? These arise when
one applies the fixed point theorem to various functional terms. In some
cases the result is entirely anodyne. For example, it is hardly news that
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the identity function has a fixed point. Suppose that we apply it to the
successor function, however. It then establishes that there is a number
that is its own successor. This is (classically) absurd. Hilbert and Bernay
take it to be so, and infer that the denotation function of arithmetic
cannot be represented in arithmetic. Interpreted like this, the result is
an analogue of the standard interpretation of Tarski’s Theorem: the truth
predicate of arithmetic is hyper-arithmetic, and so cannot be represented
in arithmetic.

Understood in a certain way, these interpretations of Tarski’s Theorem
and Hilbert and Bernays’ “Theorem” are unproblematic. Tarski’s Theo-
rem shows that arithmetic with a truth predicate is inconsistent. Hence,
any fragment of arithmetic that is consistent cannot represent its own
truth predicate. Similarly for HB’s “Theorem”: since no number is equal
to its successor, and this is a truth of arithmetic, the result shows that
any fragment of arithmetic that can express its own denotation func-
tion is inconsistent. Hence any consistent fragment of arithmetic cannot
represent its own denotation function.

More generally, however, both interpretations are problematic. Start
with Tarski’s Theorem. If we are constructing a language, and have spec-
ified its interpretation by fiat, then whether or not a certain notion, like
truth, can be expressed in the language is a substantial question. But the
argument involved in Tarski’s Theorem (which is just the Liar Paradox)
can be run, in a similar and obvious way, in English; and the situa-
tion here is quite different. The question of whether the notion of truth
in English is expressible in English is not a substantial question: it is
expressible; and this is a given. Even to raise the question makes use
of the notion, and so presupposes a positive answer. How the phrase in
question manages to attain its sense may be a difficult and unanswered
question. Whether is has this sense is not. And given that the notion
is expressible, together with the machinery of arithmetic, what Tarski’s
Theorem appears to tell us that the notion of truth is inconsistent.

The situation with HB’s Theorem is similar in some ways, importantly
different in others. First, the similarities. The Theorem itself is about a
formal language. However, this is not of its essence, and, as with Tarski’s
Theorem, the argument runs just as well in a natural language. (I will give
a natural language version in a moment.) Next, for a natural language, and
for the same reasons that one cannot but suppose that the truth predicate
of that language is represented in the language, one cannot but suppose
that the denotation relation is represented. After all, ‘the denotation of” is
a phrase of English. How it manages to achieve its sense is an interesting
question. But that it has the sense it has is not in question. And hence,
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just as is the case with Tarski’s Theorem, we cannot accept the result as
a reductio of this assumption.

4. A PARACONSISTENT INTERPRETATION?

L et us turn, now, to the differences. Tarski’s Theorem demonstrates that
a certain sentence — one employing the notion of truth — is contradic-
tory. HB’s result is a theorem to the effect that any functional term of
the language has a fixed point. This is not contradictory as such. But
it is inconsistent with other truths of arithmetic, e.g., that the succes-
sor function has no fixed point. Hence, again, it would seem to follow
that (full) arithmetic is inconsistent. In the case of Tarski’s Theorem
the inconsistency involved concerns the truth predicate. In HB’s case,
the inconsistency is somewhat different. It could be about the notion of
denotation (which would be the strict analogue), if, for example, we took
the term ¢(z) in the Theorem to involve the function §; but it need not.
We can take ¢(x) to be a purely arithmetic term (i.e., involving purely
arithmetic operations; no semantic ones). Hence, it would seem to fol-
low that pure arithmetic (i.e., arithmetic without any semantic notions)
is inconsistent.

Should we, then, accept this? The similarities between Hilbert and
Bernays’ Paradox and the Liar Paradox suggest the possibility of coun-
tenancing a dialetheic solution. Dialetheic solutions to the paradoxes of
self-reference do not normally implicate ordinary arithmetic in contra-
diction. A paraconsistent arithmetic is possible, however, and even has
something to be said for it.” It is interesting to note, then, that a version
of the fixed point theorem can be accommodated in an inconsistent but
non-trivial arithmetic.

THEOREM. Provided we restrict the language of first order arithmetic
to containing just the function symbols for successor, addition and multi-
plication (as is usually the case), there is a non-trivial model of complete
arithmetic in which every functional term has a fixed point.

Proof. The model is N,, as defined in Appendix 1 of (G. Priest,
1994). In this model n is an inconsistent object that is identical with (and
different from) every greater number. We show that for every functional
term of the language with one free variable, ¢(z), either n is a fixed
point or £(z) denotes a constant function (and so has a fixed point). The
term ¢(z) must be built up from the variable = by means of +, x, and’
(successor). Hence the result may be proved by recursion, with these
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defining the recursion cases. The basis is simple: the term = has n (and
everything else) as a fixed point.

Suppose that the result is true for ¢(z) and s(x):

(i) If t(n) = n then ¢t(n)’ = n’ = n, so n is a fixed point for ¢(z)’.
If, on the other hand, for some ¢ and every z, t(z) = ¢ then ¢(z) = ¢
and so t(z)" denotes the constant function with value ¢ + 1.

(ii) Next, consider t(z) + s(z). If n is a fixed point for either of
these, say t(z), then t(n) + s(n) = n + s(n) = n, so n is a fixed
point for the sum. If, on the other hand, s(z) and ¢(x) denote constant
functions, then for some ¢ and j, and for all z, s(z) =1, ¢(z) = j, and
so s(z) + t(xz) = i + j, and the sum denotes the constant function with
value 2 + j.

(iii) Finally, consider s(z) x ¢(z). If n is a fixed point of both, then
s(n) x t(n) = n? =mn, so n is a fixed point of the product. Suppose, on
the other hand, that one of these, say s(x), denotes a constant function.
Either its value is 0, in which case s(z) X #(z) = 0 x ¢(z) = 0, and
so the product denotes a constant function. Or else it is non-zero, say
m + 1; in which case s(z) x t(z) = (m+ 1) x t(z). Now, t(z) is either
a constant function or n is a fixed point. If it is a constant function
with value k, then s(z) x t(z) = (m + 1) X k, and so the product is
a constant function with value (m + 1) x k. If n is a fixed point, then
s(n) x t(n) = (m+ 1) x n = n. Hence, n is a fixed point for the

product.® O

5. PARACONSISTENCY REJECTED

Despite the above result, simple paraconsistency does not provide a solu-
tion to the problem. The model of the previous section works because the
functions represented by the function symbols in question are unbounded
above. That is, for any number, k£, we can find a number greater than &
such that the value of the function applied to it is also greater than k. In
such cases, the least inconsistent number can act as a fixed point. This is
not the case for bounded functions. And, in fact, it is not difficult to find
such functions, the application of the Theorem to which is unacceptable,
even by paraconsistent standards.

Consider, for example, the parity function, which maps even numbers
to 1 and odd numbers to 0. (This is obviously primitive recursive.) Let
it be represented by the function symbol f. Then we have the following:

Ve(fz =0V fz=1) (1)
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fo=1 )
fl1=0. 3)

By the fixed point theorem, there is a term, s, such that s = fs. By (1)
and instantiation, fs = 0V fs = 1. Argue by dilemma. Suppose that
Js=0. Then by si, s = 0. But then fs =1 by (2) and si. Hence by si,
1 = 0. The other homn of the dilemma is symmetrical, using (3) instead
of (2). Hence 0 = 1; and this consequence is acceptable to nobody.’

6. DENOTATION

What, then, is to be learned from HB’s “Theorem”? We cannot accept
it as a “straight” theorem: it has to be a reductio of something. This
cannot be an assumption of the inexpressibility of denotation (at least
in English). The only thing left seems to be the assumption that deno-
tation 1s a function — or at least, a total function. Some terms must fail
to refer. The primitive recursive functions of arithmetic are, of course,
total; hence, as far as the denotations of terms that contain only func-
tion symbols denoting these goes, there is no worry. However, the fixed
point term is, as I observed, the diagonalisation of ¢(dgx), and one can-
not assume that this denotes unless denotation is itself a total function,
and so beg the question. After all, in informal (natural language) terms,
HB’s “paradox” is about a term of the form: the successor of the deno-
tation of this term. Call this ¢. If it denotes, it denotes the successor of ¢,
i.e., of its own denotation. It is natural, then, to suppose that it has no
denotation.

Is this observation sufficient to avoid the unacceptable consequences?
To answer this, we need to suppose that § no longer represents a total
function, but may represent a partial function. Its semantics can no longer
be that of classical first order logic, of course. We must suppose that its
semantics, and corresponding logic, is that of some free logic.! We
need not go into details of these here, for the crucial thing is that if
denotation is only a partial function the denotation principle no longer
seems right. (If s does not denote, it would seem perverse to insist that
‘s’ denotes s.) This is sufficient to invalidate the proof of the fixed point
theorem (though not the lemma on which it depends).

Although we can no longer accept the denotation principle, a restricted
form of it is acceptable. Specifically, we can express the fact that y
denotes by the condition Jxdy = z (quantifiers, note, do not have to be
existentially loaded). Let us write this as Dy. Then for any closed term,
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t, D(t) — &(t) = ¢ is perfectly acceptable. Using this and the lemma,
we establish in the obvious way that for any term, ¢(z), there is a closed
term, s, such that D(s) — s = t(s).

Can the damaging implications of the fixed point theorem be extracted
from this restricted version of it? The relevant question is obviously
whether the fixed point term can be shown to denote, i.e., satisfy D. The
term is, recall, the diagonalisation of the term ¢(dgx). In the damaging
cases t is simply a monadic function symbol, f. Hence the fixed point
term is fdg(fdgx). Now it is natural to assume the Fregean principle
that if the argument of a term fails to denote, so does the term itself
(that is, that functions are strict, in Scott’s terminology). The argument
of f here is the term §g(fdgz). If this refers to anything, it refers to
the denotation of the diagonalisation of the term fdgz. This is just s
itself. Hence the fixed point term s cannot be shown to denote without
assuming it to denote. One might use the fact that the fixed point term is
ungrounded (in pretty much the sense of Kripke) as an argument for the
fact that it lacks a denotation. But in any case, there would seem to be no
non-question-begging way of establishing that D(s), and so damaging
consequences are not forthcoming.

The Fregean principle is not, of course, compulsory (though I think
it correct here). However, if one rejects it, the trouble is likely to be
avoided for other reasons. If sentences containing non-denoting terms
can have a referent (truth value) even though the terms they contain
have none, it is natural for the substitutivity of identicals to break down.
If, for example, truth values are assigned to atomic sentences containing
non-denoting terms by fiat, then it may well happen that a = b and Pa
are assigned the value true, whilst Pb is assigned the value false. The
law of substitutivity is applied in the proof of the fixed point theorem, as
well as the unpalatable application.!! Hence, again, the argument fails.

It is worth asking what happens to the argument if the language
is enriched with some description operator, say an indefinite descrip-
tion operator, £. If this is done, function symbols can be omitted from
the language, and all appropriate terms can be formed by description.
(Denotation is now expressed in the form of a two place predicate, Azxy,
satisfying certain conditions, and dz is simply eyAzy.) What then hap-
pens to the argument? The answer depends on the account of descriptions
employed, though in principle it is similar. If one assumes that all descrip-
tions denote (as in, for example, the standard semantics of Hilbert’s &-
operator) then the fixed point theorem and its unacceptable consequences
follow as before. If one (more reasonably) rejects this assumption, then
the pertinent question is whether the Fregean principle is adopted. If it
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is,'? then the argument would seem to fail since there is no way that the
fixed point term can be shown to denote. If it is not, then the substi-
tutivity of identicals is liable to fail,!> and so the argument again fails.
Conceivably, one could have a theory of descriptions that violated the
Fregean principle and yet validated substitutivity. However, the present
result would itself seem to speak against the correctness of such a theory.

7. A STRENGTHENED ARGUMENT

Adding descriptions to our original machinery does have a notable con-
sequence, however. It is sometimes suggested that a solution to the Liar
Paradox is to be found by supposing the liar sentence to suffer from a
case of Fregean reference failure: the liar sentence is neither true nor
false. A major problem with this suggestion is that it allows the for-
mulation of a slightly different version of the paradox, the extended (or
strengthened) Liar, which proceeds by way of “gap-plugging”.!* The
solution to Hilbert and Bernays’ paradox is also an attempted solution
by way of reference failure. It may therefore be wondered whether there
is an extended paradox employing gap-plugging in the offing. There is;
and the use of descriptions allows us to formulate this.

Let us suppose that € is an indefinite description operator satisfying
the condition dzp(z) — ¢(ezp(z)), though we make no assumptions
about the behaviour of the term exp(z), when nothing satisfies ¢ (z).
Let us then define nzp(x), as:

ey((Fzp(z) A e(y)) V (~Izp(z) Ay = 0)).
Since Jzp(z) V —3z¢p(z), it is easy to show that:
Fy(Cap(z) Ap(y)) V (-Tzp(z) Ay =0)).

Now an uncontentious principle concerning descriptions is the following:

Fyp(y) — Dey(y))-

Applying this, it follows that every n-term denotes. Let us call a term
appropriate if it is either an 7-term or it is obtained by applying an
arithmetic function symbol to an appropriate term. It follows that all
appropriate terms denote. In what follows, all the terms employed are
appropriate, and so worries about non-denotation can be set aside.

Now suppose that we define ¢’y as nz(dy = x). By the lemma of the
fixed point theorem, we know that for any arithmetic function symbol,
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f, there is an appropriate term, s, such that s = f¢'(s). If we could
establish that §’'(s) = s, we would therefore have the fixed point theorem
as before, in a form that gives unacceptable consequences. Spelled out,
this equation is: nz(d(s) = z) = s, the left hand side of which is:

ey((D{s) Nd(s) =y) V (=D(s) Ay = 0)).
Call this term 7. By the description principle, we know that:
(D(s) A 8(s) = 1)V (~D(s) A7 = 0).

It is now tempting to reasons as follows. Since D(s) we can rule out
the second disjunct.(x) Hence §(s) = r. But by the restricted denotation
principle §(s) = s (since D(s)). Hence, r = s, as required.

The reasoning is classically unimpeachable, and so the problem reap-
pears. However, this is not so for a dialetheist. For the step of the rea-
soning I marked (x) employs the disjunctive syllogism. (First, note that
D{s) — =(~D(s) Ar = 0); then apply the syllogism.) Now this fails in
paraconsistent logic.!> Specifically, if D(s) is both true and false, so may
-D(s) AT = 0 be, in which case the inference is not truth-preserving.

Accepting that s both does and does not denote in the relevant cases
is, in fact, quite plausible. It is a curiously self-referential term of a
kind that might be expected to behave strangely. It denotes, as we have
seen. However, when f is the successor function, s refers to something
that is its own successor, and there is no such thing (or if you think that
arithmetic is inconsistent, take f to represent the parity function). Hence,
the solution is not at all ad hoc.

It may, of course, be that there is some other way of extracting
dialetheically unpalatable conclusions from the situation. Only a suitable
nontriviality proof for an appropriate paraconsistent theory (arithmetic
+ denotation + descriptions) would show that this is not the case. At
present, such a proof is an interesting open problem. !¢

8. CONCLUSION

We have reviewed Hilbert and Bernays’ result and seen that it cannot
be allowed to stand, even if one is of a paraconsistent persuasion. The
conclusion that they drew from it cannot be allowed to stand either, at
least as a claim about natural language. The most plausible conclusion
to draw for the result seems to be one concerning denotation: specifical-
ly, that not all terms denote. This is not entirely without philosophical
import. For the view that all terms denote is a common (though not
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essential) one in many versions of Meinongianism. We have also seen
that this is not sufficient to save classical logicians from the unpalatable
consequences of the theorem. There are, notoriously, many different sug-
gestions concerning how truth behaves which are supposed to avoid the
Liar Paradox. Most of these have analogues for denotation, and it might
be suggested that one of them would avoid the paradox in a satisfactory
way. I see no reason to suppose that such suggestions would be more
successful at this task than they were at the original one. (They all face
well known objections, which seem to me to be insuperable.)!” At any
rate, I leave it to those who would make such suggestions to investigate
the possibility. It suffices for me that dialetheism can avoid the problem
in a simple and natural way.!8

9. POSTSCRIPT

There is a close connection between Hilbert and Bernays’ result and
recursion theory. If we restrict ourselves just to recursive functions, then
gédel codes can be taken as names, and decoding provides, in effect, a
denotation function. Hilbert and Bernays’ result then becomes a version
of the Recursion Theorem.!’

It is interesting to note the response of one of the founding fathers
of recursion theory, Kleene, to the recursion theoretic situation,?? and
see whether this can be used to solve the Hilbert and Bernays’ paradox.
Kleene moved from a theory of total functions to a theory of partial func-
tions expressed in what is, in effect, a free logic based on an underlying
3-valued logic (now called ‘strong Kleene’). In this, an identity statement
takes the value u (undefined) if either side fails to denote. The original
problem is then solved as in Section 6, since the Denotation Principle
is not, in general, valid. The extended paradox is also avoided, since
the law of excluded middle, on which the proof that all n-terms denote,
depends. However, as a solution to the natural-language problem, this 1s
inadequate. 3xd(s) = z cannot represent the claim that s denotes. For if
s fails to denote =3z (s) = z is undefined, not true.

Kleene introduces a notion of strong identity, ~, such that s ~ ¢ is true
if s and ¢ denote and have the same denotation, or are both undefined,;
otherwise it is false. (It is therefore a 2-valued predicate.) If we formulate
Hilbert and Bernays’ argument in terms of strong identity, we have both
the substitutivity of identicals and the Denotation Principle. (If s fails
to denote, so does §(s); hence the identity is true.) We can therefore
establish, e.g., that s =~ s+1. This is unproblematic if s has no denotation.
We cannot, however, infer the damaging 3z = ~ z+1. Moreover, because
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~~ is a total predicate Jxd(s) ~ x is an adequate representation of the
claim that s denotes. But now 3zd(s) ~ x V —3zd(s) ~ z is true. Hence
we can establish that every §’ term (though not every 7n-term) denotes,
and the extended paradox gives us that dz z ~ x4 1. The two notions of
identity therefore demonstrate the familiar trade-off between expressive
completeness and inconsistency.?!

NOTES

! For example, the detailed proof of Godel’s second incompleteness theorem. The fact
that the book has still not been translated into English is a particularly sad one.

2 The relevant material can be found in (D. Hilbert and P, Bernays, 1939, pp. 263-78).

% See, e.g., (G. Priest, 1987).

4 See, e.g., (G. Boolos and R. Jeffrey, 1974, p. 176). I will use brackets to indicate the
variables free in a formula or term, but not for indicating the arguments of a predicate
or function symbol. :

° First order arithmetic is normally formulated with function symbols for only succes-
sor, addition and multiplication. As is well know, however, it can be extended conser-
vatively with function symbols for all primitive recursive functions. Alternatively, it can
be formulated with a description operator added, as in Section 6 of this paper. This can
be used to provide appropriate terms.

% Hilbert and Bernays prove only that the successor function has a fixed point. The
observation that the proof generalises to all function symbols is due to Uwe Petersen,
who also drew my attention to Hilbert and Bernays’ result.

7 See (G. Priest, 1994). The argument of Appendix 2 of that paper is, in effect, a
special case of HB’s Theorem. I now think that this argument is incorrect, for reasons
that I will give in Section 7 of this paper.

% The result also holds if we add a function symbol representing the diagonal function
to the language. Let m be any number greater than n which is the code of a term. Let
1 be the code of its diagonalisation. Under standard godel codings 4 is greater than m,
and so n. Hence dn = n is true in the model.

¥ Alternatively, let f represent the function that maps O to 1 and everything else to 0,
to obtain a similar result.

10 Details of various free logics can be found in (E. Bencivenga, 1986).

"1t is also employed in the proof of the lemma on which the theorem depends.
However, in this case the terms in question are ones that denote, and so there is no
problem with it.

12 As it is in the account of descriptions in (T. Smiley, 1960), for example.

13 As it does, for example, in the semantics for description of (G. Priest, 1979).

14 See, e.g., (G. Priest, 1987, 1.3).

15 The —’s in the argument may be taken as some non-material conditional. Hence the
various applications of modus ponens are not the disjunctive syllogism.

16 A partial solution can be found in (G. Priest, 1997).

'7 See (G. Priest, 1987, Chapter 1).
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'® This paper was read at a meeting of the Australasian Association for Logic, Univer-
sity of Otago, August 1994.

19" As Jon Barwise pointed out to me.

2 See (S.C. Kleene, 1952, Chapter 12).

2l See, e.g., (G. Priest, 1987, 1.7).
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